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Abstract. Several problems in molecular spectroscopy involve two degrees of freedom to which a two
dimensional irreducible representation of a point group is associated. We show that a unified treatment of
such situations can be given within the u(2) representation theory.
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Vibronic, rovibronic, and rotation-electron-spin interactions

1 Introduction

Since its early realization by Schwinger [1] in terms of
two boson operators, the u(2) algebra has found numer-
ous applications in various areas of physics, ranging from
atomic [2], nuclear [3] and molecular [4] physics to quan-
tum optics [5]. In most cases only terms which are of low
degree in the generators are considered and the standard
u(2) ⊃ su(2) ⊃ so(2) chain is used. Applications to molec-
ular systems which admit double degenerate vibrational
modes, and more generally two dimensional E type irre-
ducible representations (irreps), do not explicitly use the
power of the u(2) representation theory; for instance cou-
plings of elementary vibrational operators are performed
in the molecular symmetry group [6]. The reason is that
one usually introduces the molecular point group G as a
subgroup of the O(3) rotation group and there is no irrep
which subduces to an E type one.

In a previous work [7] we showed that in fact a consis-
tent treatment of doubly degenerate vibrational modes in
molecules was possible through u(2). These results are ex-
tended to allow more general problems to be considered.
In particular some choices made in [7,8] are not conve-
nient for the study of Jahn-Teller systems in doubly de-
generate E electronic states. More precisely, such systems
fall into two main categories according as the reduction
of the symmetrized product [E ×E] contains, besides the
scalar irrep of G, another E type irrep or two B type
ones; these are conventionally referred to as E ⊗ ε and
E⊗ (b1 +b2) cases when a linear coupling is present [9]. In
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both instances we have thus from the outset an ue(2) alge-
bra associated with the electronic degrees of freedom. In
the E ⊗ ε problems appears naturally an additional uv(2)
algebra associated this time with the vibrational degrees
of freedom and the study of vibronic interactions may be
planned within ue(2)⊕ uv(2). Although the E ⊗ (b1 + b2)
systems do not seem to require the introduction of a uv(2)
vibrational algebra there are some limiting cases where it
is so; the obvious one is when both b1 and b2 modes have
close frequencies [10]. Also we note that for such electronic
states E ⊗ ε cases arise but without linear coupling with
the vibrational ε mode. It is thus convenient to have a
unified scheme for the construction of electronic as well as
vibrational operators and the computation of their matrix
elements.

In a first part we recall the main results of [7] in the
standard u(2) ⊃ su(2) ⊃ so(2) chain. Next we show
how symmetry adaptation in a point group can be per-
formed for arbitrary states and operators. The notation
u(2) ⊃ su∗(2) ⊃ G is used to emphasize that we deal
with a non canonical symmetry adaptation. We consider
first the case where the matrices D(E)(R), R being an
element of G, have the real form commonly used in vi-
brational spectroscopy studies and next the case where
some of these matrices are complex. The change of ori-
entation is performed and determine new operators and
states symmetrized in the whole chain. In each case our
general results are illustrated with simple examples. Possi-
ble applications of our formalism are presented in the last
section and correlations with previous studies made when
possible. In particular we give complete sets of operators
and states adapted to the study of orbital doublets of E
symmetry type.
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Throughout this paper the notation E is retained for
relations or properties which hold whatever the two di-
mensional irrep of G involved; when necessary additional
indices are introduced.

2 The standard u(2) ⊃ su(2) ⊃ so(2) chain

We briefly recall the main results of [7,8] for the construc-
tion of the space of states and irreducible tensor operators.

We start from the well-known Schwinger realiza-
tion [2,4] of su(2) in terms of two boson operators:

J+ = b+1 b2, J− = b+2 b1

Jz =
1
2
(N1 −N2) =

1
2
(b+1 b1 − b+2 b2). (1)

These generators satisfy the angular momentum commu-
tation relations:

[Jz , J±] = ±J±, [J+, J−] = 2Jz. (2)

u(2) is obtained with the addition of the linear invariant
N = N1 +N2. A basis for the space of states is given by:

|n1, n2〉 = (n1!n2!)−1/2 b+1
n1 b+2

n2 |0, 0〉 (3)

where |0, 0〉 is the vacuum state.

2.1 The covariant 2d states and elementary operators

Keeping with previous conventions [11,12] covariant su(2)
states |jm〉〉 and operators T (j)

m are characterized by the
relations (m : −j, ..., j):

Jz |jm〉〉 = −m |jm〉〉
J± |jm〉〉 = −[(j ±m)(j ∓m+ 1)]1/2 |jm∓ 1〉〉 (4)

and

[Jz, T (j)
m ] = −m T (j)

m

[J±, T (j)
m ] = −[(j ±m)(j ∓m+ 1)]1/2 T (j)

m∓1. (5)

Contravariant sets ((jm| and T m
(j), which satisfy the more

usual Racah relations [13,14], may be obtained through
the metric tensor1:

((jm| =
(
m′ m
j

)
|jm′〉〉 = (−1)j+m δm′,−m |jm′〉〉 (6)

T m
(j) =

(
m′ m
j

)
T

(j)
m′ = (−1)j+m δm′,−m T

(j)
m′ . (7)

In the following we shall deal with covariant sets only.
States and tensor operators symmetrized in the whole

u(2) ⊃ su(2) ⊃ so(2) chain are further characterized by an

1 When there is no ambiguity the Einstein summation con-
vention for indices out of parentheses is used.

additional u(2) label [m12m22] = [m1 −m2] in Gel’fand
notation [15–17] with j = (m1 +m2)/2 and

[Ni, [m1 −m2]T
(j)
−j ] = mi2

[m1 −m2]T
(j)
−j i = 1, 2. (8)

With equations (1) and (4, 8) it is easily checked that the
states (3) determine a covariant standard 2d basis

|[n 0]jm〉〉 = eiθ(j)(−1)j−m|j −m, j +m〉

= eiθ(j)
(−1)j−m

[(j +m)!(j −m)!]1/2
b+1

j−mb+2
j+m|0, 0〉

(9)

with u(2), su(2) and so(2) labels linked by:

j =
n

2
=
n1 + n2

2
, m = −n1 − n2

2

eiθ(j) is a phase factor to be fixed later. From rela-
tions (1, 5) and using known properties [15,17] of the
u(2) ⊃ su(2) ⊃ so(2) chain we first built two sets of
irreducible tensor operators with symmetry [m1 0] and
[0 −m2] in u(2)

[m1 0]T (j)
m = (−1)

m1
2 +m N (m1, 0)

×
[

m1!
(m1

2 −m)!(m1
2 +m)!

]1/2

b+1
(

m1
2 −m)b+2

(
m1
2 +m) (10)

with j = m1/2, and

[0−m2]T (j)
m = N (0,m2)

×
[

m2!
(m2

2 −m)!(m2
2 +m)!

]1/2

b1
(

m2
2 +m)b2

(
m2
2 −m) (11)

with j = m2/2. N (m1, 0) and N (0,m2) are normalization
coefficients partly fixed with the condition that the op-
erator (10) acting on the vacuum state gives a standard
covariant 2d state:

|[n 0]jm〉〉 ≡ [n 0]T (j)
m |0, 0〉. (12)

2.2 General operators

Two kinds of operators may be built from the previ-
ous (10, 11) ones. Those, denoted pitos in [7], which are
symmetry adapted in the whole u(2) ⊃ su(2) ⊃ so(2)
chain:

[m1 −m2]T (j)
m =

[
[m1 0]T (

m1
2 ) × [0−m2]T (

m2
2 )

](j)

m

= C
q1 q2 (j)

(m1
2

m2
2 ) m

[m1 0]T
(

m1
2 )
q1

[0−m2]T
(

m2
2 )
q2

(13)

where j = (m1+m2)/2 and C is a stretched su(2) Clebsch-
Gordan coefficient given in [14]. In some cases, for instance
if one considers an E electronic state, these operators are
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sufficient; however sometimes one needs more general op-
erators as for instance when dealing with vibrational E
modes. These operators, denoted gitos in [7], are obtained
by allowing j to take all values allowed by the usual su(2)
rule:

jmin =
|m1 −m2|

2
≤ j ≤ m1 +m2

2
= jmax.

We have then

[m1 −m2]T (j)
m =

[
[m1 0]T (

m1
2 ) × [0−m2]T (

m2
2 )

](j)

m
(14)

but this time the labeling [m1 −m2] is not linked to an
u(2) symmetry in Gel’fand notation. m1 (or m2) simply
gives the power in elementary creation (or annihilation)
operators in [m1 −m2]T (j)

m written in normal form. The op-
erators (14) may also be written

[m1 −m2]T (j)
m = {m1m2}gj(N1+N2) [m′

1 −m′
2]T (j)

m (15)

where [m′
1 −m′

2]T
(j)
m are the 2d standard operators (13). The

labels m′
1 and m′

2 represent the “true” u(2) symmetry of
the operators (14) and are related to m1, m2 and j by

m′
1 =

m1 −m2

2
+ j, m′

2 =
m2 −m1

2
+ j. (16)

It is easily checked that j = (m′
1 +m′

2)/2. {m1m2}gj is a
polynomial function of the u(2) linear invariant N1 +N2

given by2:

{m1m2}gj(N1+N2) =
[

(2j + 1)!
(jmax + j + 1)!(jmax − j)!

]1/2

× (N1 +N2 +
m2 −m1

2
− j)[jmax−j]. (17)

2.3 Matrix elements in the 2d standard basis

Following previous conventions [11,12] the Wigner-Eckart
theorem for covariant sets writes in terms of su(2)
Clebsch-Gordan coefficients:

〈〈[n′′ 0]j′′m′′|[m1 −m2]T (j)
m |[n′ 0]j′m′〉〉 = (2j′′ + 1)−1/2

×Cm m′ (j′′)∗
(j j′) m′′

(
[n′′ 0]j′′||[m1 −m2]T (j)||[n′ 0]j′

)

= (2j′′ + 1)−1/2F
m m′ ([n′′ 0]j′′)∗

([m′
1 −m′

2]j [n′ 0]j′) m′′

×
(
[n′′ 0]j′′||[m1 −m2]T (j)||[n′ 0]j′

)
(18)

where ∗ denotes complex conjugation. The operators are
those given by equations (13, 14) of which those in equa-
tions (10, 11) are useful special cases. The F coefficients,
which keep the full u(2) ⊃ su(2) labels, are to be used in

2 For an arbitrary operator X we have X [k] = X× (X−1)×
...× (X − k + 1).

the next section. Reduced matrix elements for all opera-
tors may be obtained with:

(
[n′′ 0]j′′||[m1 −m2]T (j)||[n′ 0]j′

)
= δn′′,n′+m1−m2 i

−m′
2

×
[

(2j + 1)(n′ +m′
1 + 1)!(n′ −m′

2)!
(n′ −m2)!(n′ −m2)!(jmax + j + 1)!(jmax − j)!

]1/2

.

(19)

2.4 Useful relations and examples

2.4.1 Phase choices

The results of the preceding sections involve several phase
choices. In particular we set for the phase of states (9)

eiθ(j) = (−1)−j = i−2j , (20)

and for the normalization coefficients

N (m1,m2) = N (m1, 0)N (0,m2)

= (−1)m2 im1 [m1!m2!]−1/2. (21)

These phase choices have been made in order to impose
particular properties to the various operators under ad-
junction (†) and time reversal (Kt):

[m1 −m2]T †(j)
m = (−1)j−m

(
[m1 −m2]T (j)

−m
)†

= im1−m2 [m2 −m1]T (j)
m (22)

Kt [m1 −m2]T (j)
m Kt−1 = [m1 −m2]T (j)

−m (23)

and identical relations for those in (13) with the substitu-
tion of T by T .

2.4.2 Some examples

Three sets of quantities are of special importance in prac-
tical applications. Those involving the fundamental [1 0]
irrep of u(2) and its adjoint [0 − 1] which subduce to
j = 1/2 in su(2) and the adjoint representation [1 − 1]
spanned by the generators. Their bosonic realizations are
explicitly given below together with their reduced matrix
elements.

The fundamental tensors. With equations (10, 11)
and (21) one gets:

N (1, 0) = i, N (0, 1) = −1
[1 0]T

(1/2)
−1/2 = ib+1

[1 0]T
(1/2)
1/2 = −ib+2

[0−1]T
(1/2)
−1/2 = −b2 [0−1]T

(1/2)
1/2 = −b1, (24)

and the two dimensional fundamental state is spanned by:

|[1 0]
1
2
m〉〉 = [1 0]T (1/2)

m |0, 0〉. (25)
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Within arbitrary states |[n 0]jm〉〉 the reduced matrix el-
ements are given by(

[n′ 0]j′||[1 0]T ( 1
2 )||[n 0]j

)
= i

(
[n 0]j||[0−1]T ( 1

2 )||[n′ 0]j′
)

= [(n+ 2)(n+ 1)]1/2 δn′,n+1

(26)

Generators. With N (0, 1) = −1 and equation (13) we get:

[1−1]T
(1)
1 = iJ−, [1−1]T

(1)
−1 = −iJ+

[1−1]T
(1)
0 = −i

√
2Jz (27)

with reduced matrix elements(
[n′ 0]j′||[1−1]T (1)||[n 0]j

)
=

− i

[
(n+ 2)(n+ 1)n

2

]1/2

δn′,n. (28)

We recall that in equations (26, 28) the labels n and j are
related by j = n/2.

3 Symmetry adaptation in a point group G

The natural subduction D( 1
2 ) ↓ G, where G is a point

group and D( 1
2 ) the su(2) fundamental irrep, gives a two

dimensional spinor irrep (or two one dimensional ones).
Yet u(2) appears as a degeneracy algebra for a two di-
mensional oscillator [2] as well as an invariance algebra for
an electronic E state [9]. This means that the mapping of
an E irrep to a D( 1

2 ) one involves algebraic properties in
configuration space and not geometrical ones; hence the
notation u(2) ⊃ su∗(2) ⊃ G used for this non canonical
symmetry adaptation. We first consider the case of groups
which admit an E irrep of integer type. This implies that
the matrices D(E)(R) (R ∈ G) may be transformed to
real form [18]. Other groups for which the “E” irrep is in
fact made of two one dimensional conjugate irreps will be
treated separately.

3.1 Some fundamental properties

(i) We first recall that within our formalism [12,19] the co-
variant components of an irreducible tensor operator with
symmetry Γ with respect to a group G are characterized
by the transformation laws

PR T
(Γ )
σ PR−1 = [D(Γ )∗(R)]σ

′
σ T

(Γ )
σ′ . (29)

We stress that in (29) the upper index in the matrix is a
row index. Under adjunction equation (29) gives

PR T
(Γ )†
σ PR−1 = [D(Γ )(R)]σ

′
σ T

(Γ )†
σ′ (30)

We may thus define the adjoint irreducible tensor operator
by [12]

T †(Γ )
σ = eiαΓ

(
Γ
σ σ′

)
T

(Γ )†
σ′ , (31)

where, within a phase, the symbol on the right-hand side
is the U matrix which transforms Γ into its complex con-
jugate [18]. If the matrices for the irrep Γ are real the
metric tensor may be, and usually is, chosen so that it
reduces to the identity. So we have:

T †(Γ )
σ = T (Γ )†

σ . (32)

(ii) As it is known any unitary transformation of the set
{bi}i=1,2 preserves the bosonic commutation relations to-
gether with the operator N = N1 + N2. Assuming that
the sets {bi}i=1,2 (or {b+i }i=1,2) span an irrep of type E
of G the quantities{

b
(E)
1 = α1

1 b1 + α2
1 b2

b
(E)
2 = α1

2 b1 + α2
2 b2

{
b
(E)†
1 = α1

1
∗ b+1 + α2

1
∗ b+2

b
(E)†
2 = α1

2
∗ b+1 + α2

2
∗ b+2

(33)
where (αij) is a unitary matrix, span an equivalent E type

irrep and the set
{
b
(E)†
σ b

(E)
σ′

}
σ,σ′=1,2

is then a genera-

tor system of u(2) equivalent to the set (1) built from
{b+i bj}i,j=1,2.

In order to restrict the arbitrariness of the αij coef-
ficients we must choose an orientation for the matrices
D(E)(R) of the considered irrep E. Also for the systems
we want to study the Jz operator, which is the so(2)
generator, transforms as the one dimensional irrep A2

(or A2g, A
′
2) appearing in the antisymmetrized product

{E × E}.

3.2 The matrices D(E)(R) are real

3.2.1 The orientation matrix

The assumption of real D(E)(R) matrices was made
in [7,8]. For all groups considered here and for a given
irrep Er of type E the matrices for the generators X and
Y , in the passive point of view, are usually taken as [20]

D(Er)(X) =
(

cos rψ sin rψ
− sin rψ cos rψ

)

D(Er)(Y ) =
(

1 0
0 −1

)
(34)

and in some cases a third Z generator with matrix repre-
sentative

D(Erα)(Z) = ±
(

1 0
0 1

)
, (35)

in which case the substitution Er → Erα is also made
in (34); α is an additional index needed for direct product
groups. The choices for the elements X , Y , Z, the appro-
priate angle ψ, the possible r and α values appearing in
equations (34, 35) are given in Appendix A. All matrices
being real, and denoting by E any two dimensional irrep
(Er or Erα) of G, we can set (Eq. (32)):

b(E)†
σ = b†(E)

σ = b+(E)
σ , (36)
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where in the right member we use the conventional nota-
tion. With equations (33, 36) and the condition that Jz
be of symmetry A2 (or A2g, A

′
2) it may be shown that we

have the set of equivalent solutions:

b1 =
eiϕ√

2
(b(E)

1 ± ib
(E)
2 ), b+1 =

e−iϕ√
2

(b+(E)
1 ∓ ib

+(E)
2 )

b2 =
eiκ√

2
(b(E)

1 ∓ ib
(E)
2 ), b+2 =

e−iκ√
2

(b+(E)
1 ± ib

+(E)
2 )

(37)

of which we choose in the following

b1 =
1√
2
(b(E)

1 + ib
(E)
2 ), b+1 =

1√
2
(b+(E)

1 − ib
+(E)

2 )

b2 =
1√
2
(b(E)

1 − ib
(E)
2 ), b+2 =

1√
2
(b+(E)

1 + ib
+(E)

2 ). (38)

This result allows one to determine easily the transforma-
tion laws of the tensor components (13) (as well as those
of (15)). It appears in particular that each subspace char-
acterized by � = 2|m| spans a two dimensional representa-
tion of G (one dimensional for � = 0) whose reduction in G
is straightforwardly found. As a result symmetry adapted
tensor operators are obtained with:

[m1 −m2]T
(j)
�Γσ = [m1 −m2]Gm�Γσ

[m1 −m2]T (j)
m (39)

where the orientation matrix [m1 −m2]G is given by

[m1 −m2]G
�/2
�Γσ = N (�)µ(Γσ)(�) i

m2−m1
2 − �

2

[m1 −m2]G
−�/2
�Γσ = (−1)m1 Π(Γσ)N (�)

× µ(Γσ)(�) i
m2−m1

2 − �
2 . (40)

with

•Π(Γσ) = 1, µ(Γσ)(�) = 1
if Γ = A1τ , B1τ or Er′τ 1

•Π(Γσ) = −1, µ(Γσ)(�) = µ(�)
if Γ = A2τ , B2τ or Er′τ 2. (41)

Also N (�) = 1/
√

2 (or 1) for � �= 0 (or � = 0) and the τ
label is needed only when E = Erα. The allowed symme-
tries Γ , for fixed �, together with the phase factor µ(�) for
common point groups and all possible E type irrep are
given in Appendix B.

Likewise from the general tensor operators (15) we
build symmetry adapted ones with

[m1 −m2]T (j)
�Γσ = [m′

1 −m′
2]Gm�Γσ

[m1 −m2]T (j)
m

= {m1,m2}gj(N1 +N2) [m′
1 −m′

2]T
(j)
�Γσ (42)

where m′
1 and m′

2 are given by (16) and the [m′
1 −m′

2]Gm�Γσ
elements are those defined by equations (40, 41). Various

phase choices lead to the following useful properties:

[m1 −m2]Gm∗
�Γσ = (−1)

m1+m2
2 +m im2−m1 [m2 −m1]G−m

�Γσ

= (−1)
m1+m2

2 − �
2 [m1 −m2]G−m

�Γσ (43)
[m1 −m2]G−m

�Γσ = (−1)m1 Π(Γσ) [m1 −m2]Gm�Γσ (44)

As a consequence we have the two properties upon ad-
junction and time reversal:

(
[m1 −m2]T (j)

�Γσ

)†
= [m2 −m1]T (j)

�Γσ = [m1 −m2]T †(j)
�Γσ

Kt [m1 −m2]T (j)
�Γσ Kt−1 = (−1)j−

�
2 [m1 −m2]T (j)

�Γσ (45)

with similar relations for operators in (39) with the sub-
stitution of T by T . Some [m1 −m2]Gm�Γσ coefficients are
given in Appendix C.

3.2.2 Matrix elements in the symmetry adapted basis

From equation (12) and the results of the previous section
symmetry adapted states are given by:

|[n 0]j�Γσ〉〉 = [n 0]T
(j)
�Γσ |0, 0〉

=
∑
m

[n 0]Gm�Γσ |[n 0]jm〉〉. (46)

Starting from the expression of matrix elements (18) in the
standard basis one obtains easily those in the symmetry
adapted basis:

〈〈[n′′ 0]j′′�′′Γ ′′σ′′|[m1 −m2]T (j)
�Γσ|[n′ 0]j′�′Γ ′σ′〉〉 =

(2j′′ + 1)−
1
2 F

�Γσ �′Γ ′σ′ ([n′′ 0]j′′)∗
([m′

1 −m′
2]j [n′ 0]j′) �′′Γ ′′σ′′

×
(
[n′′ 0]j′′||[m1 −m2]T (j)||[n′ 0]j′

)
(47)

where the reduced matrix elements are those in (19) and
where

F
�Γσ �′Γ ′σ′ ([n′′ 0]j′′)

([m′
1 −m′

2]j [n′ 0]j′) �′′Γ ′′σ′′ =∑
m,m′,m′′

[m′
1 −m′

2]Gm ∗
�Γσ

[n′ 0]Gm
′ ∗

�′Γ ′σ′
[n′′ 0]Gm

′′
�′′Γ ′′σ′′

× F
m m′ ([n′′ 0]j′′)

([m′
1 −m′

2]j [n′ 0]j′) m′′ (48)

are symmetry adapted Clebsch-Gordan coefficients.

3.2.3 Some examples

We first consider the same operators than in Section 2.4.2
and give the expressions of their symmetry adapted com-
ponents. Next we relate some of our results to another
formalism used for spherical tops and C3v molecules.
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The fundamental tensors. We use equations (39–41)
and the property which gives for any group G in Ap-
pendix A and any E type irrep

[m1 −m2] = [1 0] or [0 − 1]

⇒ Er′ = Er � = 1 µ(�) = −i.

With the [m1 −m2]G elements in Tables 6, 7 and equa-
tion (24) we have:

[1 0]T
(1/2)
1E1 = − 1√

2
(b+1 + b+2 ) = −b+(E)

1

[1 0]T
(1/2)
1E2 = − i√

2
(b+1 − b+2 ) = −b+(E)

2

[0−1]T
(1/2)
1E1 = − 1√

2
(b1 + b2) = −b(E)

1

[0−1]T
(1/2)
1E2 =

i√
2
(b1 − b2) = −b(E)

2 , (49)

and the two dimensional fundamental state is spanned by:

|[1 0]
1
2
1Eσ〉〉 = [1 0]T

(1/2)
1Eσ |0, 0〉. (50)

Generators. Likewise from equation (27) we get the gen-
eral solutions:

[1−1]T
(1)
0A2

= −
√

2Jz,
[1−1]T

(1)
2Er′1

=
√

2Jx, [1−1]T
(1)
2Er′2

= −i
√

2µ(2)Jy (51)

with:
– r′ = 2r when 2r ≤ (n− 1)/2 (n odd) (2r ≤ n/2− 1 (n

even)) for groups in G(I) and µ(2) = −i,
– r′ = n−2r when 2r > (n− 1)/2 (n odd) (2r > n/2−1

(n even)) for groups in G(I) and µ(2) = i,
– for Dnd (n even) groups change n by 2n,
– for groups in G(II) the same rules applies with in ad-

dition the labels ′ or g whatever α = ′, ′′, u or g in
Erα,

– for groups in G(III) r
′ = 2r and µ(2) = −i with parity

g in D∞h.
The special cases r = n/4 for Cnv and Dn groups (r = n/2
for Dnd (n even)) give:

[1−1]T
(1)
0A2

= −
√

2Jz,
[1−1]T

(1)
2B1

=
√

2Jx, [1−1]T
(1)
2B2

=
√

2Jy. (52)

For groups in G(II) add the parity ′ or g whatever α.
We note here that if the operators in equation (49) are

interpreted as creation and annihilation operators for a
vibrational normal mode s with E symmetry type:

b(E)
σ =

1√
2
(sq(E)

σ + i sp
(E)
σ ),

where sq
(E)
σ and sp

(E)
σ are the dimensionless coordinates

and their conjugate momenta, it is easily shown with equa-
tions (1, 49) that for the su(2) generator Jz we have:

Jz = −1
2
(sq

(E)
1 sp

(E)
2 − sq

(E)
2 sp

(E)
1 ) = −1

2 s�z

where s�z is the angular momentum of the doubly degener-
ate oscillator. We shall see that a different interpretation
can be given when the operators in (49) are associated
with an electronic state with the same E symmetry type.

Correlations with other formalisms. These can be
made mainly in the case of groups C3v, O, Td and Oh for
which general schemes have also been proposed [21,22].
In these cases we have only one E type irrep (two in Oh
differing only in parity) which is assumed to be associated
with a doubly degenerate vibration. General vibrational
operators are written in the form:

[A+ns(kΓ ) ×An′
s(k′Γ ′)](Cs)

σ (53)

where A+ns(kΓ ) (or An′
s(k′Γ ′)) is built from ns creation

a
+(E)
σ (or n′

s annihilation a
(E)
σ ) operators. We note that

the operators A+ns(kΓ ) (as well as those A+(lm0,0Γ )
σ de-

fined in [22]) differ from those denoted A+ns(kΓ )
2 in [6] by

the internal coupling, performed in Td, of the elementary
creation operators a+(E). The schemes described in [21,22]
allow to obtain functionally independent A+ns(kΓ ) for ar-
bitrary values of ns which is not the case of those in [6].
Explicitly we have [21]:

A+n(k,Γ )
σ =

α(k)√
2

n+k
2 −1

((
a+(E)

1

)2

+
(
a+(E)

2

)2
)n−k

2

×
[ k
2 ]∑
s=0

(
k
2s

)
(−1)s

(
a+(E)

1

)k−2s (
a+(E)

2

)2s

(54)

for Γσ = A1, E1 and

A+n(k,Γ )
σ =

β(k)√
2

n+k
2 −1

((
a+(E)

1

)2

+
(
a+(E)

2

)2
)n−k

2

×
[ k−1

2 ]∑
s=0

(
k

2s+ 1

)
(−1)s

(
a+(E)

1

)k−2s−1 (
a+(E)

2

)2s+1

(55)

for Γσ = A2, E2. α(k) and β(k) are real phase factors,
denoted c1(k) and c2(k) respectively in [22]:

A+n(k,Γ )
σ = (

√
2)

n−k
2 −1A+( n+k

2
n−k

2 0,0Γ )
σ . (56)

The computation of the matrix elements of the operators
in equations (53–55) is made [6,21] through a recursive
process based upon the knowledge of reduced matrix el-
ements of the elementary operators a+(E) (or a(E)) and
with formulas for tensor recouplings made in G. A dif-
ferent approach is made in [22] but the expressions given
involve power coupling coefficients Y expressed in terms
of coupling coefficients of G.

Assimilating the a+(E) with our b+(E) in equation (38)
it may be shown that the A+n(k,Γ )

σ are related to the 2d
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symmetrized pitos in Section 3.2.1 by:

[n 0]T
(j)
�Γσ = i−

n
2 + �

2 (−1)n (−1)Γ α(�)

×
[
2

n−�
2

(
n+ �

2

)
!
(
n− �

2

)
!
]−1/2

A+n(�Γ )
σ (57)

where the factor (−1)Γ follows the usual convention

(−1)Γ = 1 if Γ = A1, E and (−1)Γ = −1 if Γ = A2.

We recall that for the groups considered here we have:

µ(�) = −i for � = 3p; 3p+ 1
µ(�) = i for � = 3p+ 2. (58)

As the matrix elements of the [n 0]T
(j)
�Γσ are known those of

A+n(�Γ )
σ (or A+( n+�

2
n−�
2 0,0Γ )

σ ) can be determined. However
there is some ambiguity in the phases of states defined
in [6,21]. We set:

|n � Γσ〉 =
[
2

n−�
2

(
n+ �

2

)
!
(
n− �

2

)
!
]−1/2

A+n(�,Γ )
σ |0, 0〉.

As a consequence there might be a ±1 phase difference
according to the � values mod 6 between these states and
those of [6,22]. With equations (19, 47, 48) it may be
checked that the matrix elements are given by:

〈n′′ �′′ Γ ′′
σ′′ | A+n(�,Γ )

σ |n′ �′ Γ ′
σ′〉 = Π(Γσ, Γ ′

σ′ , Γ ′′
σ′′)

×N (�)N (�′) N (�′′) × µ(Γσ)(�) µ(Γ ′
σ′ )(�′)µ(Γ ′′

σ′′ )(�′′)

×(−1)
�+�′−�′′

2 (−1)
n−�
2 (−1)Γ+Γ ′+Γ ′′

α(�) α(�′) α(�′′)

× (1 +Π(Γσ) Π(Γ ′
σ′ ) Π(Γ ′′

σ′′))
√

2
n−�
2

×




(
n′′+�′′

2

)
!
(
n′′−�′′

2

)
!(

n′+�′
2

)
!
(
n′−�′

2

)
!




1/2

δn′′,n+n′ (59)

with

Π(Γσ, Γ ′
σ′ , Γ ′′

σ′′) =



Π(Γσ) if �′′ = �− �′
Π(Γ ′

σ′ ) if �′′ = �′ − �
Π(Γ ′′

σ′′ ) if �′′ = �+ �′
0 else

.

Equation (59) holds for all label values except in the cases
when � = �′ = �′′ = 0 for which the right member in (59)
must be divided by two in order to agree with normal-
ization conventions. We note that with equations (56, 59)
and applying the Wigner-Eckart theorem in G one obtain
the Y coefficients of equation (19) of [22].

3.3 The matrices D(E)(R) are complex

The orientation (34, 35) of the preceding section is that
mostly used in vibrational studies [6,23,24]. However it
is not well adapted to the treatment of vibronic interac-
tions in E ⊗ ε and G′ ⊗ ε Jahn-Teller systems [25,9]. We
could fixed the new matrices for the E irreps and make
the symmetry adaptation again. In fact it is much sim-
pler (especially with regards to phase choices) to proceed
through a change of basis from the known results.

3.3.1 The new orientation for E irreps

From an arbitrary covariant set {T (Er)
σ } transforming ac-

cording to equation (29) with Γ = Er we define:

T
(Er)

1̄
=
eiµ√

2

(
iT

(Er)
1 − T

(Er)
2

)

T
(Er)

2̄
=
eiµ√

2

(
−iT (Er)

1 − T
(Er)
2

)
. (60)

With equation (34) it is easily shown that we have now:

PR T
(Er)
σ̄ PR−1 = [D(Er)∗(R)]σ̄

′
σ̄ T

(Er)
σ̄′ , (61)

with

D(Er)(X) =
(
e−irψ 0

0 eirψ

)
, D(Er)(Y ) =

(
0 −1
−1 0

)
.

When the additional Z generator is needed equation (35)
is unchanged. Applying this to the fundamental irrep [1 0]
associated with the considered Er symmetry and choosing
eiµ = 1 we obtain:

|[1 0]
1
2
1Er1̄〉〉 = |[1 0]

1
2

1
2
〉〉

|[1 0]
1
2
1Er2̄〉〉 = |[1 0]

1
2
− 1

2
〉〉 (62)

which we can write more generally:

|[1 0]
1
2
1Eσ̄〉〉 = |[1 0]

1
2
m〉〉 = [1 0]T

( 1
2 )
m |0, 0〉 (63)

with the correspondence 1̄ ↔ m = 1/2, 2̄ ↔ m = −1/2.
Equation (63) traduces that for the fundamental represen-
tation [1 0] the symmetry adapted basis is the standard
basis.

3.3.2 The new G matrix and consequences

Symmetry adapted tensor operators in the whole u(2) ⊃
su(2)∗ ⊃ G are now given by (Eq. (39)):

[m1 −m2]T
(j)
�Γ σ̄ = [m1 −m2]Ḡm�Γσ̄

[m1 −m2]T (j)
m . (64)

Obviously for irreps of type A or B in any group G equa-
tions (40, 41) are still valid and [m1 −m2]Ḡ = [m1 −m2]G.

For E type representations we have:
[m1 −m2]Ḡm�Eσ̄ = (E)Uσσ̄

[m1 −m2]Gm�Eσ (65)

where
(E)U =

1√
2

(
i −i
−1 −1

)
(66)

is the unitary matrix associated with the change of basis
(Eq. (60) with µ = 0). Straightforward computations lead
to (σ = 1, 2):

[m1 −m2]Ḡ
�/2
�Eσ̄ =

iσ√
2

[m1 −m2]G
�/2
�Eσ (1 − (−1)σiµ(�))

[m1 −m2]Ḡ
−�/2
�Eσ̄ =

iσ√
2

[m1 −m2]G
−�/2
�Eσ (1 + (−1)σiµ(�))
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which show that, since µ(�) = ±i, in all cases the summa-
tion in (64) reduces to one term. Explicitly this gives:

• for µ(�) = −i

[m1 −m2]T
(j)

�E1̄
= eiϕ [m1 −m2]T

(j)
�/2

[m1 −m2]T
(j)

�E2̄
= (−1)m1+1eiϕ [m1 −m2]T

(j)
−�/2 (67)

• for µ(�) = i

[m1 −m2]T
(j)

�E1̄
= (−1)m1eiϕ [m1 −m2]T

(j)
−�/2

[m1 −m2]T
(j)

�E2̄
= −eiϕ [m1 −m2]T

(j)
�/2 (68)

where eiϕ = i
m2−m1

2 − �
2+1. The preceding relations ap-

ply equally when the substitution T → T is made. We
note that for groups admitting several E type irreps the
transformation (Eq. (60)) may be performed to all or only
some E irreps. Defining for E irrep

σ̄ = 1̄, −σ̄ = 2̄; σ̄ = 2̄, −σ̄ = 1̄ (69)

the properties of the [m1 −m2]Ḡ matrix elements may be
written for any Γ σ̄ by:

( [m1 −m2]Ḡm�Γσ̄)∗ = (−1)
m1+m2

2 − �
2 [m1 −m2]Ḡ−m

�Γ−σ̄

= (−1)
m1+m2

2 +m im2−m1 [m2 −m1]Ḡ−m
�Γ−σ̄
(70)

The properties upon adjunction and time reversal (45) of
the new symmetry adapted tensor operators become:

[m1 −m2]T (j)†
�Γ σ̄ = [m2 −m1]T (j)

�Γ−σ̄ = [m1 −m2]T †(j)
�Γ−σ̄

Kt [m1 −m2]T (j)
�Γ σ̄ Kt−1 = (−1)j−

�
2 [m1 −m2]T (j)

�Γ−σ̄.
(71)

Matrix elements in the new symmetry adapted basis are
given by relation (47) in which the substitution σ → σ̄
is made everywhere, the reduced matrix elements being
unchanged. Likewise the new symmetry adapted Clebsch-
Gordan coefficients are given by (48) with the substitution

[m1 −m2]Gm�Γσ → [m1 −m2]Ḡm�Γσ̄. (72)

3.3.3 Examples

We take again the cases of Sections 2.4.2, 3.2.3.
The fundamental tensors. With µ(1) = −i equa-

tions (67, 68) give:

[1 0]T
(1/2)

1E1̄
= [1 0]T

(1/2)
1/2 = −ib+2

[1 0]T
(1/2)

1E2̄
= [1 0]T

(1/2)
−1/2 = ib+1

[0−1]T
(1/2)

1E1̄
= i[0−1]T

(1/2)
1/2 = −ib1

[0−1]T
(1/2)

1E2̄
= −i[0−1]T

(1/2)
−1/2 = ib2 (73)

and for the two dimensional fundamental state we still
have:

|[1 0]
1
2
1Eσ̄〉〉 = [1 0]T

(1/2)
1Eσ̄ |0, 0〉. (74)

Generators. For the two main cases (Sect. 3.2.3) we find:

– for µ(2) = −i

[1−1]T
(1)
0A2

= −i[1−1]T
(1)
0 = −

√
2Jz

[1−1]T
(1)

2Er′ 1̄
= [1−1]T

(1)
1 = iJ−

[1−1]T
(1)

2Er′ 2̄
= [1−1]T

(1)
−1 = −iJ+ (75)

– for µ(2) = i

[1−1]T
(1)
0A2

= −i[1−1]T
(1)
0 = −

√
2Jz

[1−1]T
(1)

2Er′ 1̄
= −[1−1]T

(1)
−1 = iJ+

[1−1]T
(1)

2Er′ 2̄
= −[1−1]T

(1)
1 = −iJ−. (76)

In the special cases equation (52) is unchanged.

4 Applications

The preceding formalism can be used in several areas of
spectroscopy of which we consider below several cases.

4.1 Conventional vibrational studies

We start from the assumption that a given molecule has
an E type mode in its full vibrational representation. The
possible modes are given in Appendix A of [9] for all
molecular structures. The results of the preceding sections
determine all symmetry adapted states |[n 0]j�Γσ〉〉 (or
|[n 0]j�Γ σ̄〉〉) and all vibrational operators [m1 −m2]V(j)

�Γσ

(or [m1 −m2]V(j)
�Γ σ̄) associated with that mode. In particu-

lar, as mentioned previously, the generator with symmetry
A2 is interpreted as the oscillator angular momentum:

[1−1]T
(1)
0A2

= −i[1−1]T
(1)
0 =

1√
2
s�z

and the linear invariant is nothing but the usual number
operator. Results in Appendix B give the symmetries of
these operators, as a function of �, for all common point
groups. From this we can first build an effective vibrational
Hamiltonian, linear combination of Hermitian and time-
reversal invariant operators with m1 = m2:

Hvib =
∑
m1j�

m1tj�
[m1 −m1]V(j)

�A1
(77)

where the m1tj� are real parameters. In (77) j = 0, ...m1

and (Eqs. (45, 71)) (−1)j−
�
2 = 1. Keeping only terms up
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Table 1. Expressions for [m1 −m1]T (j)
�A1

terms in equation (78).

[1−1]V(0)
0A1

1√
2
(N1 +N2)

[2−2]V(0)
0A1

1

2
√

3
(N1 +N2)(N1 +N2 − 1)

[2−2]V(2)
0A1

1√
6
(J2 − 3J2

z )

[2−2]V(2)
4A1

1

2
√

2
(J2

+ + J2
−)

[3−3]V(0)
0A1

1
12

(N1 +N2)(N1 +N2 − 1)(N1 +N2 − 2)

[3−3]V(2)
0A1

1
6
(N1 +N2 − 2)(J2 − 3J2

z )

[3−3]V(3)
6A1

1

2
√

3
(J3

+ + J3
−)

to order three in the generators give us

Hvib = 1t00
[1−1]V(0)

0A1
+ 2t00

[2−2]V(0)
0A1

+ 2t20
[2−2]V(2)

0A1

+ 2t24
[2−2]V(2)

4A1
(a)

+ 3t00
[3−3]V(0)

0A1
+ 3t20

[3−3]V(2)
0A1

+ 3t36
[3−3]V(3)

6A1
(b) (78)

The conditions for the terms (a), (b) to be retained in the
expansion for a given Er mode are for groups in G(I):

(a)

{
r = n/4 G = Cnv, Dn

r = n/2 G = Dnd (n even)

(b)



r = n/6 G = Cnv, Dn

r = n/3 G = Cnv, Dn, O, Td

r = n/3, 2n/3 G = Dnd (n even)

.

(79)

The same conditions apply for groups in G(II) for an Erα
mode for all α. Groups in G(III) have only E1 (E1α) vi-
brational modes thus only terms with � = 0, j even appear
in the expansions (77) and (78). Explicit expressions for
the terms in (78) are given in Table 1. Matrix elements
of the various operators are easily computed with the re-
sults obtained in the preceding sections. As far as only
totally symmetric operators are considered both orienta-
tion of Sections 3.2 and 3.3 are equivalent. In particular
we note that all � = 0 operators are diagonal since:

F
0A1 l′Γ ′σ′ ([n′′ 0]j′′)

([m1 −m2]j [n′ 0]j′) l′′Γ ′′σ′′ = C
0 �′/2 (j′′)
(j j′) �′′/2

× δ
j′′,j′+ m1−m2

2
δ�′,�′′ δΓ ′,Γ ′′ δσ′,σ′′ . (80)

As an illustration we take again the case of spherical tops
and C3v molecules [6,21,22]. With equations (78, 79) we
have:

Hvib = 1t00
[1−1]V(0)

0A1
+ 2t00

[2−2]V(0)
0A1

+ 2t20
[2−2]V(2)

0A1
+ 3t00

[3−3]V(0)
0A1

+ 3t20
[3−3]V(2)

0A1
+ 3t36

[3−3]V(3)
6A1

. (81)

Within the same order of approximation and with the
same assumption of an isolated E normal mode we have
(Eq. (53)) using the notations of [21]:

Hvib = x1

(
A+1(1,E) ×A1(1,E)

)(A1)

+ x2

(
A+2(0,A1) ×A2(0,A1)

)(A1)

+ x3

(
A+2(2,E) ×A2(2,E)

)(A1)

+ x4

(
A+3(1,E) ×A3(1,E)

)(A1)

+ x5

(
A+3(3,A1) ×A3(3,A1)

)(A1)

+ x6

(
A+3(3,A2) ×A3(3,A2)

)(A1)

. (82)

where the couplings are performed in G = C3v or G =
Td, Oh. Both models, in equations (81) and (82) are
strictly equivalent. However at this stage several remarks
and comparisons are in order concerning both expansions
of Hvib.

– The full characterization of operators in (81) requires
less labels than in (82) (five instead of seven).

– The computation of matrix elements of any vibrational
operators [m1 −m2]V(j)

�Γσ is straightforward which is not
the case of those in equation (53).

– Contrarily to those in (82) all operators in (81), except
[3−3]V(3)

6A1
, are diagonal in the initial basis.

– The advantages linked to a normal form expansion of
Hamiltonian operators [6,21,22] are preserved by the
2d gitos due to the coupling scheme (14) adopted. As
such, in both formalisms the number of possible oper-
ators, acting within a vibrational sub-space character-
ized by a fixed value of n = v, is limited.

– The physical meaning of the various operators in (81)
is easier to find. So if one refers to the quantum num-
bers v and � characterizing in first approximation the
Hamiltonian eigenstates (or energy levels): the opera-
tor [1−1]V(0)

0A1
gives the harmonic structure; [2−2]V(0)

0A1

and [3−3]V(0)
0A1

represent anharmonicity corrections to
the equidistant structure obtained in zeroth order;
[2−2]V(2)

0A1
and [3−3]V(2)

0A1
lead to the � sub-structure of

energy levels (which depends upon v for the operator
[3−3]V(2)

0A1
); finally [3−3]V(3)

6A1
gives the splitting of the

A1 and A2 sub-levels for � = 3p. Such a discussion is
impossible with the operators in equation (82). In Fig-
ure 1 we illustrate with an energy level diagram the
effect of the successive addition in Hvib of the various
operators [m1 −m1]V(j)

�A1
.

The preceding discussion is in fact not restricted to spher-
ical or C3v molecules. This can be easily seen from equa-
tions (78, 79) and Table 1.
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n=1

n=2

n=3

n=4

l=1

l=0
l=2

l=1

l=3

l=0

l=2

l=4

[1−1]V(0)
0A1

[2−2]V(0)
0A1

[3−3]V(0)
0A1

[2−2]V(2)
0A1

[3−3]V(2)
0A1

[3−3]V(3)
6A1

Fig. 1. Typical level scheme associated with Hvib (Eq. (81)).

4.2 The U(p + 1) dynamical approach

The treatment of vibrational E modes presented in the
preceding section implicitly assumes the possibility of an
infinite number of energy levels: the n quantum number
runs over all values from 0 up to ∞ and consequently
there are also an infinite number of possible vibrational
operators. In other words we deal with the noncompact
u(2, 1) dynamical algebra of the two dimensional harmonic
oscillator [2]. To overcome this somewhat unsatisfactory
situation for real molecules, one may look for a compact
dynamical algebra with an appropriate finite dimensional
irrep which contains all the physical states. Various so-
lutions have been proposed [26–29] more or less inspired
by models of nuclear physics [30–32]. For our problem the
u(p+ 1) approach [8,29,33,34] is convenient especially in
view of its application to linear E⊗ ε Jahn-Teller systems
and we show below that it is a natural extension of the 2d
formalism. We assume that:

– we consider a molecule, with symmetry point group G
(one of those introduced in previous sections), which
admits an E-type mode in its full vibrational repre-
sentation,

– within a u(p + 1) dynamical approach we have to
introduce the non-invariance algebra u(3) to which
we associate a set of elementary boson operators
{b+i , bi}i=1,2,3.

Thus we first deal with the chain:

u(3) ⊃ u(2) ⊃ su(2) ⊃ so(2). (83)

The space of states is a carrier space for the so-called
totally symmetric (or most degenerate) irrep [N00] =
[N 0̇] of u(3) which subduces to [n 0] (n = 0, 1, ...N)
in u(2) [15,17].

4.2.1 Tensors in the chain u(3) ⊃ u(2) ⊃ su(2) ⊃ so(2)

It is well-known that the quantities Eij = {b+i bj}, with i
and j running from 1 to 3, form a particular realization of
the generators for the u(3) algebra [2,16]. They satisfy:

[Eij , Ekl] = δjkEil − δilEkj . (84)

The Eij generators with i < j, i > j, and i = j are
respectively raising, lowering and weight operators. The
weight operators are diagonal in the |n1, n2, n3〉 canonical
basis of a three dimensional oscillator:

Eii|n1, n2, n3〉 = Ni|n1, n2, n3〉 = ni|n1, n2, n3〉.

All operators which may act within an irrep [N 0̇] have
symmetry [z 0−z] with z = 0, 1...N . Now, it can be verified
that all operators defined by

T
[

[z 0 − z]
(maxc)

]
= αz,N b+1

zb3
z (85)

are possible maximal components in u(3) since their com-
mutators with each Eij raising generator is zero. So as
to settle the value of the αz,N coefficient we impose the
normalization condition:

〈n, 0, N − n| T
[

[z 0 − z]
(maxc)

]
|0, 0, N〉 = δz,n. (86)

The notation |n1, n2, n3〉 for the states is that of the u(3)
canonical chain. |0, 0, N〉 and |n, 0, N − n〉 represent re-
spectively the state with zero excitation quantum and the
state with n excitation quanta maximal in u(2). For con-
dition (86) to be satisfied by operators in (85) we must
have

αz,N =
[
(N − z)!
N ! z!

]1/2

. (87)
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Operators which are semi-maximal in u(3) are deduced
from those in equation (85) with appropriate lowering op-
erators [35–37] and we obtain:

T


z 0 −z
m1 −m2

m1


 = G(z,m1,m2) b+1

m1 b2
m2 , (88)

where G(z,m1,m2) is an operator function invariant in
u(2)

G(z,m1,m2) =[(
z
m1

) (
z
m2

)
(z +m2 + 1)!(z +m1 + 1)!(N − z)!

(m1 +m2 + 1)!(2z + 1)!N !z!

]1/2

×
{

u∑
t=0

(−1)t+m2

(
z−m1

t

)
(m1+m2+1)!(z −m2)!

(m1+m2+1+t)!(z−m2−t)!

× (N1+N2 −m1)[t](N3−z+m1+u)[u−t]
}

× b+3
z−m1−u b3z−m2−u. (89)

with u = inf(z − m1, z − m2). Now from the results of
section 2 we have:

b+1
m1 b2

m2 = N (m1,m2) [m1 −m2]T
(j)
−j ,

thus the operator in the left member of equation (88) is,
within a phase factor, the minimal covariant component
of an irreducible tensor in the su(2) ⊃ so(2) chain. Con-
sequently all necessary tensors oriented in u(3) ⊃ u(2) ⊃
su(2) ⊃ so(2) are obtained if we define their minimal co-
variant component by:

T


 z 0 − z
[m1 −m2] (j)

−j


 = eiΨ(z,m1,m2)T


z 0 −z
m1 −m2

m1


.

Using the fact that the su(2) generators (1) commute with
G(z,m1,m2) it is easily checked that an arbitrary covari-
ant tensor is obtained with:

T


 z 0 − z
[m1 −m2] (j)

m


 =

1
N (m1,m2)

eiΨ(z,m1,m2)

× G(z,m1,m2) [m1 −m2]T (j)
m (90)

where the coefficients N (m1,m2) are those in equa-
tion (21). We recall the range of variation of each label
specifying the operator in (90):

z = 0, 1, ..., N
m1 = 0, 1, ..., z; m2 = 0, 1, ..., z

j =
m1 +m2

2
; m = −j,−j + 1..., j − 1, j. (91)

The arbitrariness in the phase factor eiΨ(z,m1,m2) can be
raised by imposing that the u(3) symmetry adapted ten-
sors satisfy the same properties upon adjunction and time

reversal than the standard 2d tensors:

T


 z 0 − z
[m1 −m2] (j)

m



†

= (−1)j+m im1−m2

×T


 z 0 − z
[m2 −m1] (j)

−m


 (92)

Kt T


 z 0 − z
[m1 −m2] (j)

m


K−1

t = T


 z 0 − z
[m1 −m2] (j)

−m


. (93)

If we set Kt b+3 Kt−1 = b+3 it may be shown that an ap-
propriate choice for eiΨ(z,m1,m2) so that relations (92, 93)
hold is:

eiΨ(z,m1,m2) = im1 . (94)

4.2.2 Matrix elements

We denote |[N 0̇][n 0]jm〉〉 the states associated with the
irrep [N 0̇] and symmetrized in u(3) ⊃ u(2) ⊃ su(2) ⊃
so(2). They may be obtained from the zero quantum ex-
citation state |[N 0̇][0 0]00〉〉 ≡ |0, 0, N〉 with

|[N 0̇][n 0]jm〉〉 = T


n 0 − n
[n 0] (j)

m


 |[N 0̇][0 0]00〉〉. (95)

Matrix elements of operators (90) within the basis (95)
are given by an expression similar to (18):

〈〈[N 0̇] [n′′ 0]j′′m′′|T


 z 0 − z
[m1 −m2] (j)

m


|[N 0̇] [n′ 0]j′m′〉〉

= (2j′′ + 1)−1/2C
m m′ (j′′)∗
(j j′) m′′

×
(

[N 0̇] [n′′ 0]j′′||T
[

z 0 − z
[m1 −m2] (j)

]
||[N 0̇] [n′ 0]j′

)
.

(96)

The reduced matrix element in (96) is obtained once the
contribution of the part G(z,m1,m2) in (90) is known.
This is determined from the expanded expression (89). A
rather straightforward computation leads to:

([N 0̇] [n′′ 0]j′′||T
[
z 0 − z

[m1 −m2] (j)

]
||[N 0̇] [n′ 0]j′) =[(

z

m1

)(
z

m2

)
(z +m2 + 1)!(z +m1 + 1)!(N − z)!

(m1 +m2 + 1)!(2z + 1)!N !z!

× m1!m2!(N − n′)!(N − n′ +m2 −m1)!
(N − n′ − z +m2 + u)!(N − n′ − z +m2 + u)!

]1/2

×
{

u∑
t

(−1)t
(
z −m1

t

)
(m1 +m2 + 1)!(z −m2)!(n′ −m2)!
(m1 +m2 + 1 + t)!(z −m2 − t)!

× (N − n′ +m2 − z + u)!
(n′ −m2 − t)!(N − n′ +m2 − z + t)!

}
× ([n′′ 0]j′′ ||[m1 −m2]T (j)|| [n′ 0]j′) (97)
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where the reduced matrix element of the standard 2d op-
erator is given by (19) with m′

1 = m1, m′
2 = m2.

4.2.3 Symmetry adaptation in a point group G

The behavior of operators (90) under an operation R of
G is determined by that of the elementary bosons b+i and
bi (i = 1, 2, 3). In the following we keep first the assump-
tions of Section 3.2, in particular equation (38), for the
boson operators with indices i = 1, 2 which span an ir-
rep of type E of G. For a correct description, in terms of
allowed symmetries in G, of the states within the represen-
tation [N 0̇] in u(3) we must impose that b+3 , b3 belong to
the scalar representation of G. As a consequence the term
G(z,m1,m2) given by (89) is invariant in G and the oper-
ators (90) transform under the action of the generators of
G as the 2d standard operators. This property allows the
symmetry adaptation in G of both kinds of tensors with
the same orientation matrix. The u(3) symmetry adapted
tensors are thus given by

T


 z 0 − z
[m1 −m2] (j)

�Γσ


 = [m1 −m2]Gm�ΓσT


 z 0 − z
[m1 −m2] (j)

m




where the [m1 −m2]G matrix is that defined in Sec-
tion 3.2.1. These new operators satisfy properties similar
to those of operators [m1 −m2]T

(j)
�Γσ. In particular it is easily

checked with equations (92, 93) and the properties (43, 44)
of the matrix [m1 −m2]G that:

T


 z 0 − z
[m1 −m2] (j)

�Γσ



†

= T


 z 0 − z
[m2 −m1] (j)

�Γσ




KtT


 z 0 − z
[m1 −m2] (j)

�Γσ


K−1

t = (−1)j−
�
2

×T


 z 0 − z
[m1 −m2] (j)

�Γσ


. (98)

Finally within the symmetry adapted states given by:

|[N 0̇][n 0]j�Γσ〉〉 = T


n 0 − n
[n 0] (j)
�Γσ


 |[N 0̇][0 0]00〉〉, (99)

the matrix elements are obtained with a relation similar
to (47):

〈〈Ψ(κ′′)|T


 z 0 − z
[m1 −m2] (j)

�Γσ


|Ψ(κ′)〉〉 =

(2j′′ + 1)−1/2F
�Γσ �′Γ ′σ′ ([n′′ 0]j′′)∗

([m1 −m2]j [n′ 0]j′) �′′Γ ′′σ′′

×
(

[N 0̇] [n′′ 0]j′′||T
[
z 0 − z

[m1 −m2] (j)

]
||[N 0̇] [n′ 0]j′

)
(100)

where we set κ = [N 0̇][n 0]j�Γσ. The reduced matrix
elements are those in (97) and the symmetry adapted
Clebsch-Gordan symbols those defined in (48) with the
[m1 −m2]Gmatrix appropriate for the G group and E mode
considered. Obviously the results in this section can be
transposed if the orientation for the irreps of G are those
of Section 3.3. One only needs to make the substitution
σ → σ̄ everywhere except in the right member of equa-
tion (98) where it is σ → −σ̄.

4.3 Electronic states and operators for an orbital
doublet

For an orbital doublet or E term it is well-known that an
u(2) algebra is appropriate [9,38]. We shall denote Er the
irrep of G spanned by the electronic states (if needed the
additional index α = ′ or ′′, u, g can be added in a trivial
manner). So, from the results of the previous sections the
electronic space of states is a carrier space for the irrep [10]
of ue(2) which subduces to Er in G with possible bases:

|[10]
1
2
m〉〉 ue(2) ⊃ sue(2) ⊃ soe(2) (a)

|[10]
1
2
Er σ〉〉 ue(2) ⊃ su∗e(2) ⊃ G (b)

|[10]
1
2
Er σ̄〉〉 ue(2) ⊃ su∗e(2) ⊃ G (c) (101)

where we indicate on the right the algebraic chain and
where in case (b) (resp. (c)) the matrices for the irrep of
type E are in real form (resp. complex). Also we recall
that in fact basis (a) and (c) are identical.

A complete set of electronic operators is given by:

[1−1]E(k)
pe



pe = m case (a)
pe = � Γσ case (b)
pe = � Γ σ̄ case (c)

. (102)

Actually as [1−1]E(0) reduces to the u(2) linear invariant
(N1 +N2)/

√
2 which is a constant within [1 0] we are left

with [1−1]E(1) = [1−1]E(1). We give in Table 2 the ex-
pressions of the symmetry adapted electronic operators in
terms of the sue(2) generators3. In this table the various
subcases correspond to different symmetries of the elec-
tronic operators according to the rules given after equa-
tion (51):

(i) r = n/4 (or r = n/2);
(ii) r′ = 2r;
(iii) r′ = n− 2r (or r′ = 2n− 2r)

where the cases in parenthesis refer to Dnd (n even)
groups. From these expressions it is easily checked that the

3 For practical purposes the generators have been renormal-
ized by a factor

√
2.
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Table 2. Symmetry adapted electronic operators [1−1]E(1).

(a) [1−1]E
(1)
0 = −iSz [1−1]E

(1)
1 = iS−/

√
2 [1−1]E

(1)
−1 = −iS+/

√
2

(b, c)(i) [1−1]E
(1)
0A2

= −Sz [1−1]E
(1)
2B1

= Sx
[1−1]E

(1)
2B2

= Sy

(b)(ii) [1−1]E
(1)
0A2

= −Sz [1−1]E
(1)
2Er′1

= Sx
[1−1]E

(1)
2Er′2

= −Sy
(b)(iii) [1−1]E

(1)
0A2

= −Sz [1−1]E
(1)
2Er′1

= Sx
[1−1]V

(1)
2Er′2

= Sy

(c)(ii) [1−1]E
(1)
0A2

= −Sz [1−1]V
(1)

2Er′ 1̄
= iS−/

√
2 [1−1]V

(1)

2Er′ 2̄
= −iS+/

√
2

(c)(iii) [1−1]E
(1)
0A2

= −Sz [1−1]V
(1)

2Er′ 1̄
= iS+/

√
2 [1−1]V

(1)

2Er′ 2̄
= −iS−/

√
2

symmetry adapted electronic operators satisfy the com-
mutation rules of a “pseudo-spin” [9]:[

[1−1]E
(1)
0A2

, [1−1]E
(1)
2B1

]
= −i [1−1]E

(1)
2B2[

[1−1]E
(1)
2B1

, [1−1]E
(1)
2B2

]
= −i [1−1]E

(1)
0A2[

[1−1]E
(1)
2B2

, [1−1]E
(1)
0A2

]
= −i [1−1]E

(1)
2B1

(103)

for case (i) and[
[1−1]E

(1)
0A2

, [1−1]E
(1)
2Er′1

]
= iη [1−1]E

(1)
2Er′2[

[1−1]E
(1)
2Er′1

, [1−1]E
(1)
2Er′2

]
= iη [1−1]E

(1)
0A2[

[1−1]E
(1)
2Er′2

, [1−1]E
(1)
0A2

]
= iη [1−1]E

(1)
2Er′1

(104)

[
[1−1]E

(1)
0A2

, [1−1]E
(1)

2Er′ 1̄

]
= η [1−1]E

(1)

2Er′ 1̄[
[1−1]E

(1)

2Er′ 1̄
, [1−1]E

(1)

2Er′ 2̄

]
= η [1−1]E

(1)
0A2[

[1−1]E
(1)

2Er′ 2̄
, [1−1]E

(1)
0A2

]
= η [1−1]E

(1)

2Er′ 2̄
(105)

where η = +1(−1) for cases (ii) and (iii).

4.3.1 Matrix elements of electronic operators

To facilitate comparisons with previous studies we give
below the matrices of electronic operators, computed with
the relations (18) for case (a), (47) for cases (b) and (c)
with the substitution σ → σ̄ in this latter case. In all three
cases we have [m′

1 − m′
2]j = [0 − 0]0 or [m′

1 − m′
2]j =

[1 − 1]1 and
(
[1 0]12 ||[1−1]E(0)||[1 0]12

)
=

√
2(

[1 0]12 ||[1−1]E(1)||[1 0]12
)

= −i
√

3
2 .

To underline the differences between operators and their
matrix representative we add a “∧” and all matrices are
expressed in terms of the usual Pauli matrices:

σ̂z =
(

1 0
0 −1

)
, σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
(106)

or with σ̂± = σ̂x ± iσ̂y; σ̂0 is the two dimensional identity
matrix. In all cases we have:

[1−1]Ê(0)
0 =

1√
2

(
1 0
0 1

)
=

1√
2
σ̂0.

The ue(2) ⊃ sue(2) ⊃ soe(2) orientation

[1−1]Ê
(1)
1 = − i√

2
σ̂+,

[1−1]Ê
(1)
−1 =

i√
2
σ̂−

[1−1]Ê
(1)
0 =

i

2
σ̂z . (107)

As it is normal the z component of the pseudo-spin S is
diagonal but electronic states are not symmetrized in G.

The ue(2) ⊃ su∗e(2) ⊃ G chain with orientation I

[1−1]Ê
(1)
2Er′1

=
1
2
σ̂z,

[1−1]Ê
(1)
2Er′2

=
η

2
σ̂x

[1−1]Ê
(1)
0A2

=
1
2
σ̂y. (108)

with still η = 1 (η = −1) for case (ii) and (iii). The usual
orientation for E symmetry types gives symmetry adapted
states but the z component of the pseudo-spin S is no
longer diagonal.

For the special case (i) the Er′ generators are re-
placed by:

[1−1]Ê
(1)
2B1

=
1
2
σ̂z ,

[1−1]Ê
(1)
2B2

= −1
2
σ̂x. (109)

In view of applications to E ⊗ (b1 + b2 + ...) cases [9,39]
it appears immediately from (109) that it must be pos-
sible to define a new orientation for this case in which
the generator [1−1]E

(1)
2B2

would be diagonal instead of the
[1−1]E

(1)
2B1

one. The corresponding transformation is easily
shown to be of the form:

T
(Er)
¯̄1

=
eiθ√

2

(
T

(Er)

1̄
+ iT

(Er)

2̄

)

=
eiθeiπ/4√

2

(
T

(Er)
1 − T

(Er)
2

)

T
(Er)
¯̄2

=
eiµ√

2

(
T

(Er)

1̄
− iT

(Er)

2̄

)

= −e
iµe−iπ/4√

2

(
T

(Er)
1 + T

(Er)
2

)
. (110)
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The choice ei(θ−µ) = i keeps real matrices with D(Er)(X)
identical to that in (34) and:

D(Er)(Y ) =
(

0 1
1 0

)
. (111)

The choice eiθ = e−iπ/4 leads to a real change of basis
from orientation I:

T
(Er)
¯̄1

=
1√
2

(
T

(Er)
1 − T

(Er)
2

)

T
(Er)
¯̄2

=
1√
2

(
T

(Er)
1 + T

(Er)
2

)
. (112)

Straightforward computations lead to a new ¯̄G matrix:

[m1 −m2]T (j)
�Γ ¯̄σ = [m1 −m2] ¯̄Gm�Γ ¯̄σ

[m1 −m2]T (j)
m (113)

with elements:

¯̄σ [m1 −m2] ¯̄Gm�Er′ ¯̄σ

¯̄1 → 1√
2

(
[m1 −m2]Gm�Er′1 −

[m1 −m2]Gm�Er′2

)
¯̄2 → 1√

2

(
[m1 −m2]Gm�Er′1 −

[m1 −m2]Gm�Er′2

)
(114)

and [m1 −m2] ¯̄G = [m1 −m2]G when Γ is of type A or B.
The properties of these new coefficients are easily deduced
from those given in (43, 44); likewise matrix elements of
the new symmetry adapted tensors (113) are given by
equation (47) with the substitution σ → ¯̄σ. In particu-
lar for the operators (109) we have now:

[1−1]Ê
(1)
2B1

=
1
2

(
0 1
1 0

)
=

1
2
σ̂x

[1−1]Ê
(1)
2B2

=
1
2

(
1 0
0 −1

)
=

1
2
σ̂z . (115)

Although the change of orientation can be made for any
E type representation, it is mostly useful for r = n/4
(r = n/2) for Dn, Cnv groups with n = 4p (Dnd (n even))
and similar cases for groups in G(II). In the following this
new orientation will be referred to as orientation III.

The ue(2) ⊃ su∗e(2) ⊃ G chain with orientation II
Case (i):

[1−1]Ê
(1)
2B1

= −1
2
σ̂x,

[1−1]Ê
(1)
2B2

=
1
2
σ̂y

[1−1]Ê
(1)
0A2

=
1
2
σ̂z . (116)

Case (ii):

[1−1]Ê
(1)

2Er′ 1̄
= − i√

2
σ̂+,

[1−1]Ê
(1)

2Er′ 2̄
=

i√
2
σ̂−

[1−1]Ê
(1)
0A2

=
1
2
σ̂z . (117)

Case (iii):

[1−1]Ê
(1)

2Er′ 1̄
= − i√

2
σ̂−, [1−1]Ê

(1)

2Er′ 2̄
=

i√
2
σ̂+

[1−1]Ê
(1)
0A2

=
1
2
σ̂z . (118)

This orientation gives, in all cases, symmetry adapted
states and the z-component of the pseudo-spin S is di-
agonal.

5 Conclusion

From a two boson realization of the u(2) algebra, and
assuming that these two bosons span an arbitrary two di-
mensional irrep of type E of a point group G, we showed
that complete sets of states and operators symmetrized in
the whole u(2) ⊃ su∗(2) ⊃ G chain can be built. Several
orientations for the matrices of E type irrep have been
introduced whose relevance depends upon the problem at
hand. Various physical interpretations of the correspond-
ing degrees of freedom may be made. Examples related
to vibrational and electronic spectroscopy problems have
been presented. It would also be possible, with very few
modifications, to use our results for rotational degrees of
freedom in symmetric top molecules. This can be seen
from the fact that the su(2) and so(3) algebras are isomor-
phic and that the SO(3) ↓ G symmetry subduction for the
Jα elementary rotational operators is of type A2 + E for
all groups considered here, except for cubic point groups
associated with spherical tops. More involved applications
are currently under development for the treatment of vi-
bronic interactions in E ⊗ (b1 + b2...), E ⊗ ε and G′ ⊗ ε
Jahn-Teller systems.

Appendix A: Generators X, Y, Z

The various point groups admitting integer irrep of type
E are separated into three categories:

– groups in G(I) are finite subgroups of O(3) of rank
two. We have thus the groups Dn, Cnv, Dnd (n even),
O and Td;

– groups in G(II) are direct product groups of an element
in G(I) with Cs or CI ;

– groups in G(III) are C∞v and D∞h.

The chosen elements X , Y , Z, the appropriate angle ψ,
the possible r and α values are given for all groups in
Tables 3, 4 and 5.

Appendix B: Symmetries
of u(2) ⊃ su(2)∗ ⊃ G tensors for common
point groups

For the various groups in G(I), G(II) the results have been
established for arbitrary values of the principal axis or-
der n. In order to facilitate applications we give below,
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Table 3. Conventions for groups in G(I).

G X Y r ψ

Dn Czn C′
2(Ox)

1...n−1
2

n odd

1...n
2
− 1 n even

2π
n

Cnv Czn σv(Ox)
1...n−1

2
n odd

1...n
2
− 1 n even

2π
n

Dnd

(n even)
Sz2n C′

2(Ox) 1...n− 1 π
n

O C3(1,1,1) Cz4 1 2π
3

Td C3(1,1,1) Sz4
3 1 2π

3

Table 4. Conventions for groups in G(II).

G Z α sign (Eq. (35))

Dnh = Dn ×Cs
(n odd)

σh
′
′′

+
−

Dnh = Dn × Ci
(n even)

I
g
u

+
−

Dnd = Dn × Ci
(n odd)

I
g
u

+
−

Oh = O × Ci I
g
u

+
−

Table 5. Conventions for groups in G(III).

G X Y Z r α sign (Eq. (35))

C∞v Czψ σv(Ox) 1, 2, ...,∞
D∞h

= C∞v × Ci
Czψ σv(Ox) I 1, 2, ...,∞ g

u

+

−

as a function of �, the symmetries of operators or states
one may build for common point groups. We use the no-
tations of equations (39–42) for irreducible tensors built
from quantities with symmetry Er (or Erα). In applica-
tions to vibrational studies the substitution T → V is
made; for electronic tensors and operators we use T → E .

As whenever �Γ is of type A1 + A2 (resp. B1 + B2)
we have µ(�) = −i (resp. µ(�) = +i), the phase µ(�) is
specified below only for E type irreps.

• For all groups the � = 0 operators [m1 −m2]T (j, 0Γ ) are
characterized by:

Er(Erα) Γ (condition)
Er A1 (m1 even)A2 (m1 odd)

Erα(α = ′ or ′′) A′
1 (m1 even)A′

2 (m1 odd)
Erα(α = g or u) A1g (m1 even)A2g (m1 odd) (B.1)

with µ(0) = 1 (µ(0) = −i) when Γ = A1 (Γ = A2).

• G = C3v, D3, O and Td

[m1 −m2]T (j, 3pAi) i = 1, 2
[m1 −m2]T (j, �E) � = 3p+ 1 (µ(�) = −i)

� = 3p+ 2 (µ(�) = i). (B.2)

• G = D3d, Oh, D3h

Operators [m1 −m2]T (j, �Γτ ) have the same labels as in
equation (B.2) with:

D3d, Oh for Eα = Eg τ = g

for Eα = Eu τ = g m1 +m2 even
τ = u m1 +m2 odd

D3h for Eα = E′ τ = ′

for Eα = E′′ τ = ′ m1 +m2 even

τ = ′′ m1 +m2 odd. (B.3)

• G = D2d, C4v and D4

[m1 −m2]T (j, 4pAi) i = 1, 2
[m1 −m2]T (j, 4p+2Bi) i = 1, 2

[m1 −m2]T (j, �E) � = 4p+ 1 (µ(�) = −i)
� = 4p+ 3 (µ(�) = i). (B.4)

• G = D4h

Operators [m1 −m2]T (j, �Γτ ) have the same labels as in
equation (B.4) with:

for Eα = Egτ = g

for Eα = Euτ = g m1 +m2 even
τ = u m1 +m2 odd. (B.5)

• G = D4d

Er = E1:

[m1 −m2]T (j, 8pAi) i = 1, 2
[m1 −m2]T (j, 8p+4Bi) i = 1, 2

[m1 −m2]T (j, �E1) � = 8p+ 1 (µ(�) = −i)
� = 8p+ 7 (µ(�) = i)

[m1 −m2]T (j, �E2) � = 8p+ 2 (µ(�) = −i)
� = 8p+ 6 (µ(�) = i)

[m1 −m2]T (j, �E3) � = 8p+ 3 (µ(�) = −i)
� = 8p+ 5 (µ(�) = i) (B.6)

Er = E2:

[m1 −m2]T (j, 4pAi) i = 1, 2
[m1 −m2]T (j, 4p+2Bi) i = 1, 2

[m1 −m2]T (j, �E2) � = 4p+ 1 (µ(�) = −i)
� = 4p+ 3 (µ(�) = i) (B.7)
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Er = E3:
[m1 −m2]T (j, 8pAi) i = 1, 2

[m1 −m2]T (j, 8p+4Bi) i = 1, 2
[m1 −m2]T (j, �E1) � = 8p+ 3 (µ(�) = −i)

� = 8p+ 5 (µ(�) = i)
[m1 −m2]T (j, �E2) � = 8p+ 2 (µ(�) = i)

� = 8p+ 6 (µ(�) = −i)
[m1 −m2]T (j, �E3) � = 8p+ 1 (µ(�) = −i)

� = 8p+ 7 (µ(�) = i). (B.8)

• G = C5v, D5

Er = E1:
[m1 −m2]T (j, 5pAi) i = 1, 2
[m1 −m2]T (j, �E1) � = 5p+ 1 (µ(�) = −i)

� = 5p+ 4 (µ(�) = i)
[m1 −m2]T (j, �E2) � = 5p+ 2 (µ(�) = −i)

� = 5p+ 3 (µ(�) = i) (B.9)

Er = E2:
[m1 −m2]T (j, 5pAi) i = 1, 2
[m1 −m2]T (j, �E1) � = 5p+ 2 (µ(�) = i)

� = 5p+ 3 (µ(�) = −i)
[m1 −m2]T (j, �E2) � = 5p+ 1 (µ(�) = −i)

� = 5p+ 4 (µ(�) = i). (B.10)

• G = D5d, D5h

Operators [m1 −m2]T (j, �Γτ ) have the same labels as in
equation (B.10) with:

D5d Erα = Erg τ = g

Erα = Eru τ = g m1 +m2 even
τ = u m1 +m2 odd

D5h Erα = E′
r τ = ′

Erα = E′′
r τ = ′ m1 +m2 even

τ = ′′ m1 +m2 odd. (B.11)

• G = C6v, D6

Er = E1

[m1 −m2]T (j, 6pAi) i = 1, 2
[m1 −m2]T (j, 6p+3Bi) i = 1, 2

[m1 −m2]T (j, �E1) � = 6p+ 1 (µ(�) = −i)
� = 6p+ 5 (µ(�) = i)

[m1 −m2]T (j, �E2) � = 6p+ 2 (µ(�) = −i)
� = 6p+ 4 (µ(�) = i) (B.12)

Er = E2

[m1 −m2]T (j, 3pAi) i = 1, 2
[m1 −m2]T (j, �E2) � = 3p+ 1 (µ(�) = −i)

� = 3p+ 2 (µ(�) = i). (B.13)

• G = D6h

Operators [m1 −m2]T (j, �Γτ ) have the same labels as in
equation (B.13) with:

Erα = Erg τ = g

Erα = Eru τ = g m1 +m2 even.
τ = u m1 +m2 odd. (B.14)

• G = D6d

Er = E1

[m1 −m2]T (j, 12pAi) i = 1, 2
[m1 −m2]T (j, 12p+6Bi) i = 1, 2

[m1 −m2]T (j, �E1) � = 12p+ 1 (µ(�) = −i)
� = 12p+ 11 (µ(�) = i)

[m1 −m2]T (j, �E2) � = 12p+ 2 (µ(�) = −i)
� = 12p+ 10 (µ(�) = i)

[m1 −m2]T (j, �E3) � = 12p+ 3 (µ(�) = −i)
� = 12p+ 9 (µ(�) = i)

[m1 −m2]T (j, �E4) � = 12p+ 4 (µ(�) = −i)
� = 12p+ 8 (µ(�) = i)

[m1 −m2]T (j, �E5) � = 12p+ 5 (µ(�) = −i)
� = 12p+ 7 (µ(�) = i) (B.15)

Er = E2:

[m1 −m2]T (j, 6pAi) i = 1, 2
[m1 −m2]T (j, 6p+3Bi) i = 1, 2

[m1 −m2]T (j, �E2) � = 6p+ 1 (µ(�) = −i)
� = 6p+ 5 (µ(�) = i)

[m1 −m2]T (j, �E4) � = 6p+ 2 (µ(�) = −i)
� = 6p+ 4 (µ(�) = i) (B.16)

Er = E3:

[m1 −m2]T (j, 4pAi) i = 1, 2
[m1 −m2]T (j, 4p+2Bi) i = 1, 2

[m1 −m2]T (j, �E3) � = 4p+ 1 (µ(�) = −i)
� = 4p+ 3 (µ(�) = i) (B.17)

Er = E4:

[m1 −m2]T (j, 3pAi) i = 1, 2
[m1 −m2]T (j, �E4) � = 3p+ 1 (µ(�) = −i)

� = 4p+ 2 (µ(�) = i) (B.18)
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Er = E5:

[m1 −m2]T (j, 12pAi) i = 1, 2
[m1 −m2]T (j, 12p+6Bi) i = 1, 2

[m1 −m2]T (j, �E1) � = 12p+ 5 (µ(�) = −i)
� = 12p+ 7 (µ(�) = i)

[m1 −m2]T (j, �E2) � = 12p+ 2 (µ(�) = −i)
� = 12p+ 10 (µ(�) = i)

[m1 −m2]T (j, �E3) � = 12p+ 3 (µ(�) = −i)
� = 12p+ 9 (µ(�) = i)

[m1 −m2]T (j, �E4) � = 12p+ 4 (µ(�) = −i)
� = 12p+ 8 (µ(�) = i)

[m1 −m2]T (j, �E5) � = 12p+ 1 (µ(�) = −i)
� = 12p+ 11 (µ(�) = i). (B.19)

• G = C∞v

For any Er and � �= 0

[m1 −m2]T (j, �Er′) r′ = r�. (B.20)

• G = D∞h

Operators [m1 −m2]T (j, �Γτ ) have the same labels as in
equation (B.20) with:

Erα = Erg τ = g

Erα = Eru τ = g m1 +m2 even
τ = u m1 +m2 odd. (B.21)

Appendix C: Some [m1 −m2]G coefficients
and symmetry adapted coupling symbols

(a) For the lowest values of m1 and m2 these coefficients
can be obtained for arbitrary Er irrep; for Erα type irreps
the values of the coefficients are the same and τ indices
added following the rules given in Appendix B. These
are given in Tables 6, 7 and 8 for [m1 − m2] = [1 0],
[m1 − m2] = [0 − 1] and [m1 − m2] = [1 − 1], re-
spectively associated with the fundamental irreps of u(2)
and that spanned by the generators. The coefficients for
[m1 − m2] = [2 0] and [m1 − m2] = [0 − 2], useful for
establishing connections with operators quadratic in the
coordinates, are also given. In Table 6 appear coefficients
which keep the same values in all orientations I, II and III;
Tables 7, 8 gather those depending on the chosen orienta-
tion I or II.

(b) For the special orientation III determined by the
change of basis (112) we only give below the [m1 −m2] ¯̄G

Table 6. [m1 −m2]G coefficients identical in all orientations.

Case [m1,−m2] � Γσ m [m1 −m2]Gm�Γσ

[0 0] 0 A1 0 1

[1 − 1] 0 A2 0 −i
all [2 − 0] 0 A1 0 −i

[0 − 2] 0 A1 0 i

[1 − 1] 2 B1 1 −i/
√

2

[1 − 1] 2 B1 −1 i/
√

2

[1 − 1] 2 B2 1 1/
√

2

[1 − 1] 2 B2 −1 1/
√

2

r = n/4 [2 − 0] 2 B1 1 −1/
√

2

(r = n/2) [2 − 0] 2 B1 −1 −1/
√

2

[2 − 0] 2 B2 1 −i/
√

2

[2 − 0] 2 B2 −1 i/
√

2

[0 − 2] 2 B1 1 1/
√

2

[0 − 2] 2 B1 −1 1/
√

2

[0 − 2] 2 B2 1 i/
√

2

[0 − 2] 2 B2 −1 −i/
√

2

for [m1 −m2] = [1 0], [m1 −m2] = [0 − 1]:

[1 0] ¯̄G
1
2

1Er
¯̄1

=
ω∗
√

2
[1 0] ¯̄G− 1

2

1Er
¯̄1

=
ω√
2

[1 0] ¯̄G
1
2

1Er
¯̄2

= − ω√
2

[1 0] ¯̄G− 1
2

1Er
¯̄2

= − ω∗
√

2
[0−1] ¯̄G

1
2

1Er
¯̄1

=
ω√
2

[0−1] ¯̄G− 1
2

1Er
¯̄1

=
ω∗
√

2
[0−1] ¯̄G

1
2

1Er
¯̄2

=
ω∗
√

2
[0−1] ¯̄G− 1

2

1Er
¯̄2

=
ω√
2

(C.1)

with ω = ei
π
4 . If r = n/4 (r = n/2) the [1−1] ¯̄G, [2−0] ¯̄G

and [0−2] ¯̄G values are those in Table 6.
(c) The operators in equation (78) are determined with

the following coefficients identical in all orientations:

• for any Er mode [2−2]G0
0A1

= 1,

• for an Er mode with r = p in groups D4p, C4pv, D2pd

[2−2]G2
4A1

= − 1√
2
, [2−2]G−2

4A1
= − 1√

2
,

• for an Er mode with r = p in groups D3p, C3pv, Td, O
or r = p, 2p in D6p, C6pv or r = 2p, 4p in D6pd

[3−3]G3
6A1

=
i√
2
, [3−3]G−3

6A1
= − i√

2
.

(d) With the given [m1 −m2]G matrix elements ex-
act values of several symmetry adapted coupling symbols
equation (48) can be obtained. In particular those used in
Section 4.3.1

F
�Γγ 1Erγ′ ([1 0]1/2)

([1 − 1]1 [1 0]1/2) 1Erγ′′
(C.2)



198 The European Physical Journal D

Table 7. [m1 −m2]Gm�Γσ coefficients in orientation I.

Case [m1,−m2] � Γσ m G

[0 − 1] 1 Er 1 1/2 1/
√

2

[0 − 1] 1 Er 1 −1/2 1/
√

2

[0 − 1] 1 Er 2 1/2 −i/
√

2

all [0 − 1] 1 Er 2 −1/2 i/
√

2

[1 − 0] 1 Er 1 1/2 −i/
√

2

[1 − 0] 1 Er 1 −1/2 i/
√

2

[1 − 0] 1 Er 2 1/2 −1/
√

2

[1 − 0] 1 Er 2 −1/2 −1/
√

2

[1 − 1] 2 Er′ 1 1 −i/
√

2

[1 − 1] 2 Er′ 1 −1 i/
√

2

[1 − 1] 2 Er′ 2 1 −1/
√

2

[1 − 1] 2 Er′ 2 −1 −1/
√

2

[2 − 0] 2 Er′ 1 1 −1/
√

2

r′ = 2r [2 − 0] 2 Er′ 1 −1 −1/
√

2

[2 − 0] 2 Er′ 2 1 i/
√

2

[2 − 0] 2 Er′ 2 −1 −/i
√

2

[0 − 2] 2 Er′ 1 1 1/
√

2

[0 − 2] 2 Er′ 1 −1 1/
√

2

[0 − 2] 2 Er′ 2 1 −i/
√

2

[0 − 2] 2 Er′ 2 −1 /i
√

2

[1 − 1] 2 Er′ 1 1 −i/
√

2

[1 − 1] 2 Er′ 1 −1 i/
√

2

[1 − 1] 2 Er′ 2 1 1/
√

2

[1 − 1] 2 Er′ 2 −1 1/
√

2

[2 − 0] 2 Er′ 1 1 −1/
√

2

r′ = n− 2r [2 − 0] 2 Er′ 1 −1 −1/
√

2

(r′ = 2n− 2r) [2 − 0] 2 Er′ 2 1 −i/
√

2

[2 − 0] 2 Er′ 2 −1 /i
√

2

[0 − 2] 2 Er′ 1 1 1/
√

2

[0 − 2] 2 Er′ 1 −1 1/
√

2

[0 − 2] 2 Er′ 2 1 i/
√

2

[0 − 2] 2 Er′ 2 −1 −/i
√

2

with γ = σ, σ̄, ¯̄σ respectively for orientations I, II and III
and the appropriate [m1 −m2]G matrix in equation (48).
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6. J.P. Champion, M. Loëte, G. Pierre, in Spectroscopy of
the Earth’s atmosphere and interstellar medium, edited by
K. Narahari Rao, A. Weber (Academic Press, San Diego,
1992)

7. V. Boujut, F. Michelot, J. Mol. Spectrosc. 173, 237 (1995)
8. V. Boujut, Ph.D. thesis, University of Dijon, France (1996)
9. I.B. Bersuker, V.Z. Polinger, Vibronic Interactions in

Molecules and Crystals (Springer-Verlag, Berlin, 1989)
10. M.S. Child, J. Molec. Spectrosc. 10, 357 (1963)
11. F. Michelot, B. Bobin, J. Moret-Bailly, J. Mol. Spectrosc.

76, 374 (1979)



F. Michelot and M. Rey: Symmetry adaptation for powers of E irreducible representations of point groups 199
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